Performs reliability analysis and outputs a concise summary of key metrics. The results can also be visualized.
Usage
reliability(x, ...)
# S3 method for class 'tna'
reliability(
x,
types = "relative",
split = 0.5,
iter = 1000,
scaling = "none",
...
)Arguments
- x
A
tnaobject.- ...
Ignored.
- types
A
charactervector giving the model types to fit. Seebuild_model()for available options.- split
A
numericvalue between0and1specifying the proportion of data for the split. The default is0.5for an even split.- iter
An
integerspecifying number of iterations (splits). The default is1000.- scaling
See
compare().
See also
Validation functions
bootstrap(),
deprune(),
estimate_cs(),
permutation_test(),
permutation_test.group_tna(),
plot.group_tna_bootstrap(),
plot.group_tna_permutation(),
plot.group_tna_stability(),
plot.tna_bootstrap(),
plot.tna_permutation(),
plot.tna_reliability(),
plot.tna_stability(),
print.group_tna_bootstrap(),
print.group_tna_permutation(),
print.group_tna_stability(),
print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),
print.tna_bootstrap(),
print.tna_clustering(),
print.tna_permutation(),
print.tna_reliability(),
print.tna_stability(),
prune(),
pruning_details(),
reprune(),
summary.group_tna_bootstrap(),
summary.tna_bootstrap()
Examples
# Small number of iterations for CRAN
model <- tna(engagement)
rel <- reliability(model, iter = 20)
