Print Detected Communities
Usage
# S3 method for class 'group_tna_communities'
print(x, ...)
Arguments
- x
A
group_tna_communities
object.- ...
Arguments passed to
print.tna_communities()
.
See also
Community detection functions
communities()
,
plot.group_tna_communities()
,
plot.tna_communities()
,
print.tna_communities()
Examples
model <- group_model(engagement_mmm)
comm <- communities(model)
print(comm)
#> Cluster 1:
#>
#> Number of communities found by each algorithm:
#>
#> walktrap fast_greedy label_prop infomap
#> 1 3 3 1
#> edge_betweenness leading_eigen spinglass
#> 3 2 2
#>
#> Community assignments:
#>
#> state walktrap fast_greedy label_prop infomap edge_betweenness
#> 1 Active 1 1 1 1 1
#> 2 Average 1 2 2 1 2
#> 3 Disengaged 1 3 3 1 3
#> leading_eigen spinglass
#> 1 1 2
#> 2 2 2
#> 3 2 1
#>
#> Cluster 2:
#>
#> Number of communities found by each algorithm:
#>
#> walktrap fast_greedy label_prop infomap
#> 1 2 3 1
#> edge_betweenness leading_eigen spinglass
#> 2 2 2
#>
#> Community assignments:
#>
#> state walktrap fast_greedy label_prop infomap edge_betweenness
#> 1 Active 1 2 1 1 1
#> 2 Average 1 1 2 1 2
#> 3 Disengaged 1 1 3 1 2
#> leading_eigen spinglass
#> 1 1 2
#> 2 2 2
#> 3 2 1
#>
#> Cluster 3:
#>
#> Number of communities found by each algorithm:
#>
#> walktrap fast_greedy label_prop infomap
#> 1 2 2 1
#> edge_betweenness leading_eigen spinglass
#> 3 2 1
#>
#> Community assignments:
#>
#> state walktrap fast_greedy label_prop infomap edge_betweenness
#> 1 Active 1 1 1 1 1
#> 2 Average 1 1 1 1 2
#> 3 Disengaged 1 2 2 1 3
#> leading_eigen spinglass
#> 1 1 1
#> 2 1 1
#> 3 2 1