
Package index
-
tna-package
- The
tna
Package.
-
build_model()
tna()
ftna()
ctna()
atna()
- Build a Transition Network Analysis Model
-
print(<tna>)
- Print a
tna
Object
-
plot(<tna>)
- Plot a Transition Network Analysis Model
-
prepare_data()
- Compute User Sessions from Event Data
-
import_data()
- Convert Wide Format Sequence Data to Long Format
-
print(<tna_data>)
- Print a TNA Data Object
-
summary(<tna>)
- Calculate Summary of Network Metrics for a Transition Network
-
hist(<tna>)
- Plot a Histogram of Edge Weights in the Network
-
simulate(<tna>)
- Simulate Data from a Transition Network Analysis Model
-
print(<summary.tna>)
- Print a TNA Summary
-
plot_frequencies()
- Plot the Frequency Distribution of States
-
plot_frequencies(<group_tna>)
- Plot the Frequency Distribution of States
-
plot_mosaic()
- Create a Mosaic Plot of Transitions or Events
-
plot_mosaic(<tna_data>)
- Plot State Frequencies as a Mosaic Between Two Groups
-
print(<group_tna>)
- Print a
group_tna
Object
-
plot(<group_tna>)
- Plot a Grouped Transition Network Analysis Model
-
summary(<group_tna>)
- Calculate Summary of Network Metrics for a grouped Transition Network
-
hist(<group_tna>)
- Plot a Histogram of Edge Weights for a
group_tna
Object.
-
plot_mosaic(<group_tna>)
- Plot State Frequencies as a Mosaic Between Two Groups
-
print(<summary.group_tna>)
- Print a Summary of a Grouped Transition Network Analysis Model
-
centralities()
- Calculate Centrality Measures for a Transition Matrix
-
betweenness_network()
- Build and Visualize a Network with Edge Betweenness
-
print(<tna_centralities>)
- Print Centrality Measures
-
plot(<tna_centralities>)
- Plot Centrality Measures
-
print(<group_tna_centralities>)
- Print Centrality Measures
-
plot(<group_tna_centralities>)
- Plot Centrality Measures
-
communities()
- Community Detection for Transition Networks
-
print(<tna_communities>)
- Print Detected Communities
-
plot(<tna_communities>)
- Plot Communities
-
print(<group_tna_communities>)
- Print Detected Communities
-
plot(<group_tna_communities>)
- Plot Detected Communities
-
cliques()
- Identify Cliques in a Transition Network
-
print(<tna_cliques>)
- Print Found Cliques of a TNA Network
-
plot(<tna_cliques>)
- Plot Cliques of a TNA Network
-
print(<group_tna_cliques>)
- Print Found Cliques
-
plot(<group_tna_cliques>)
- Plot Found Cliques
-
compare()
- Compare Two Matrices or TNA Models with Comprehensive Metrics
-
compare(<group_tna>)
- Compare TNA Clusters with Comprehensive Metrics
-
print(<tna_comparison>)
- Print Comparison Results
-
plot_compare()
- Plot the Difference Network Between Two Models
-
plot_compare(<group_tna>)
- Plot the Difference Network Between Two Clusters
-
plot(<tna_comparison>)
- Plot the Comparison of Two TNA Models or Matrices
-
permutation_test()
- Compare Two Networks from Sequence Data using a Permutation Test
-
permutation_test(<group_tna>)
- Compare Networks using a Permutation Test
-
print(<tna_permutation>)
- Print Permutation Test Results
-
print(<group_tna_permutation>)
- Print Permutation Test Results
-
plot(<tna_permutation>)
- Plot the Significant Differences from a Permutation Test
-
plot(<group_tna_permutation>)
- Plot Permutation Test Results
-
print(<tna_bootstrap>)
- Print Bootstrap Results
-
print(<summary.tna_bootstrap>)
- Print a Bootstrap Summary
-
print(<summary.group_tna_bootstrap>)
- Print a Bootstrap Summary for a Grouped Transition Network Model
-
print(<tna_stability>)
- Print Centrality Stability Results
-
plot(<tna_stability>)
- Plot Centrality Stability Results
-
print(<group_tna_bootstrap>)
- Print
group_tna
Bootstrap Results
-
print(<group_tna_stability>)
- Print Centrality Stability Results
-
plot(<group_tna_stability>)
- Plot Centrality Stability Results
-
estimate_cs()
estimate_centrality_stability()
- Estimate Centrality Stability
-
prune()
- Prune a Transition Network based on Transition Probabilities
-
deprune()
reprune(<tna>)
- Restore a Pruned Transition Network Analysis Model
-
reprune()
- Restore Previous Pruning of a Transition Network Analysis Model
-
pruning_details()
- Print Detailed Information on the Pruning Results
-
bootstrap()
- Bootstrap Transition Networks from Sequence Data
-
plot(<tna_bootstrap>)
- Plot a Bootstrapped Transition Network Analysis Model
-
plot(<group_tna_bootstrap>)
- Plot a Bootstrapped Grouped Transition Network Analysis Model
-
summary(<tna_bootstrap>)
- Summarize Bootstrap Results
-
summary(<group_tna_bootstrap>)
- Summarize Bootstrap Results for a Grouped Transition Network
-
group_model()
group_tna()
group_ftna()
group_ctna()
group_atna()
- Build a Grouped Transition Network Analysis Model
-
rename_groups()
- Rename Clusters
-
mmm_stats()
- Retrieve Statistics from a Mixture Markov Model (MMM)
-
as.igraph(<group_tna>)
- Coerce a Specific Group from a
group_tna
Object into anigraph
Object.
-
as.igraph(<matrix>)
- Coerce a Weight Matrix into an
igraph
Object.
-
as.igraph(<tna>)
- Coerce a
tna
Object into anigraph
Object.
-
engagement
- Example Data on Student Engagement
-
engagement_mmm
- Example Mixed Markov Model Fitted to the
engagement
Data
-
group_regulation
- Example Data on Group Regulation