
Package index
-
tna-package - The
tnaPackage.
-
print(<tna>) - Print a
tnaObject
-
plot(<tna>) - Plot a Transition Network Analysis Model
-
hist(<tna>) - Plot a Histogram of Edge Weights in the Network
-
sna() - Build a Social Network Analysis Model
-
print(<summary.tna>) - Print a TNA Summary
-
plot_frequencies() - Plot the Frequency Distribution of States
-
plot_frequencies(<group_tna>) - Plot the Frequency Distribution of States
-
plot_mosaic() - Create a Mosaic Plot of Transitions or Events
-
plot_mosaic(<tna_data>) - Plot State Frequencies as a Mosaic Between Two Groups
-
plot_associations() - Plot an Association Network
-
print(<group_tna>) - Print a
group_tnaObject
-
plot(<group_tna>) - Plot a Grouped Transition Network Analysis Model
-
summary(<group_tna>) - Calculate Summary of Network Metrics for a grouped Transition Network
-
hist(<group_tna>) - Plot a Histogram of Edge Weights for a
group_tnaObject.
-
plot_mosaic(<group_tna>) - Plot State Frequencies as a Mosaic Between Two Groups
-
print(<summary.group_tna>) - Print a Summary of a Grouped Transition Network Analysis Model
-
plot_sequences() - Create a Sequence Index Plot or a Distribution Plot
-
import_data() - Import Wide Format Sequence Data as Long Format Sequence Data
-
import_onehot() - Import One-Hot Data and Create a Co-Occurrence Network Model
-
prepare_data() - Compute User Sessions from Event Data
-
print(<tna_data>) - Print a TNA Data Object
-
simulate(<tna>) - Simulate Data from a Transition Network Analysis Model
-
summary(<tna>) - Calculate Summary of Network Metrics for a Transition Network
-
centralities() - Calculate Centrality Measures for a Transition Matrix
-
betweenness_network() - Build and Visualize a Network with Edge Betweenness
-
print(<tna_centralities>) - Print Centrality Measures
-
plot(<tna_centralities>) - Plot Centrality Measures
-
print(<group_tna_centralities>) - Print Centrality Measures
-
plot(<group_tna_centralities>) - Plot Centrality Measures
-
communities() - Community Detection for Transition Networks
-
print(<tna_communities>) - Print Detected Communities
-
plot(<tna_communities>) - Plot Communities
-
print(<group_tna_communities>) - Print Detected Communities
-
plot(<group_tna_communities>) - Plot Detected Communities
-
cliques() - Identify Cliques in a Transition Network
-
print(<tna_cliques>) - Print Found Cliques of a TNA Network
-
plot(<tna_cliques>) - Plot Cliques of a TNA Network
-
print(<group_tna_cliques>) - Print Found Cliques
-
plot(<group_tna_cliques>) - Plot Found Cliques
-
cluster_sequences()print(<tna_clustering>) - Cluster Sequences via Dissimilarity Matrix based on String Distances
-
mmm_stats() - Retrieve Statistics from a Mixture Markov Model (MMM)
-
compare() - Compare Two Matrices or TNA Models with Comprehensive Metrics
-
compare(<group_tna>) - Compare Grouped TNA Models with Comprehensive Metrics
-
compare_sequences() - Compare Sequences Between Groups
-
print(<tna_comparison>) - Print Comparison Results
-
print(<tna_sequence_comparison>) - Print a Comparison of Sequences
-
plot_compare() - Plot the Difference Network Between Two Models
-
plot_compare(<group_tna>) - Plot the Difference Network Between Two Groups
-
plot(<tna_comparison>) - Plot the Comparison of Two TNA Models or Matrices
-
plot(<tna_sequence_comparison>) - Plot a Sequence Comparison
-
permutation_test() - Compare Two Networks from Sequence Data using a Permutation Test
-
permutation_test(<group_tna>) - Compare Networks using a Permutation Test
-
print(<tna_permutation>) - Print Permutation Test Results
-
print(<group_tna_permutation>) - Print Permutation Test Results
-
plot(<tna_permutation>) - Plot the Significant Differences from a Permutation Test
-
plot(<group_tna_permutation>) - Plot Permutation Test Results
-
print(<tna_bootstrap>) - Print Bootstrap Results
-
print(<summary.tna_bootstrap>) - Print a Bootstrap Summary
-
print(<summary.group_tna_bootstrap>) - Print a Bootstrap Summary for a Grouped Transition Network Model
-
print(<tna_stability>) - Print Centrality Stability Results
-
plot(<tna_stability>) - Plot Centrality Stability Results
-
print(<group_tna_bootstrap>) - Print
group_tnaBootstrap Results
-
print(<group_tna_stability>) - Print Centrality Stability Results
-
plot(<group_tna_stability>) - Plot Centrality Stability Results
-
estimate_cs()estimate_centrality_stability() - Estimate Centrality Stability
-
prune() - Prune a Transition Network based on Transition Probabilities
-
deprune()reprune(<tna>) - Restore a Pruned Transition Network Analysis Model
-
reprune() - Restore Previous Pruning of a Transition Network Analysis Model
-
pruning_details() - Print Detailed Information on the Pruning Results
-
bootstrap() - Bootstrap Transition Networks from Sequence Data
-
bootstrap_cliques() - Bootstrap Cliques of Transition Networks from Sequence Data
-
plot(<tna_bootstrap>) - Plot a Bootstrapped Transition Network Analysis Model
-
plot(<group_tna_bootstrap>) - Plot a Bootstrapped Grouped Transition Network Analysis Model
-
summary(<tna_bootstrap>) - Summarize Bootstrap Results
-
summary(<group_tna_bootstrap>) - Summarize Bootstrap Results for a Grouped Transition Network
-
group_model()group_tna()group_ftna()group_ctna()group_atna() - Build a Grouped Transition Network Analysis Model
-
rename_groups() - Rename Groups
-
as.igraph(<group_tna>) - Coerce a Specific Group from a
group_tnaObject into anigraphObject.
-
as.igraph(<matrix>) - Coerce a Weight Matrix into an
igraphObject.
-
as.igraph(<tna>) - Coerce a
tnaObject into anigraphObject.
-
engagement - Example Data on Student Engagement
-
engagement_mmm - Example Mixed Markov Model Fitted to the
engagementData
-
group_regulation - Example Wide Data on Group Regulation
-
group_regulation_long - Example Long Data on Group Regulation