Print a TNA Data Object
Usage
# S3 method for class 'tna_data'
print(x, data = "sequence", ...)
See also
Other data:
import_data()
,
import_onehot()
,
prepare_data()
,
simulate.tna()
Examples
res <- prepare_data(group_regulation_long, action = "Action", actor = "Actor",
time = "Time")
#> ── Preparing Data ──────────────────────────────────────────────────────────────
#> ℹ Input data dimensions: 27533 rows, 6 columns
#> ℹ First few time values: 2025-01-01 08:27:07.712698, 2025-01-01
#> 08:35:20.712698, and 2025-01-01 08:42:18.712698
#> ℹ Number of values to parse: 27533
#> ℹ Sample values: 2025-01-01 08:27:07.712698, 2025-01-01 08:35:20.712698, and
#> 2025-01-01 08:42:18.712698
#> ℹ Sample of parsed times: 2025-01-01 08:27:07.712698, 2025-01-01
#> 08:35:20.712698, and 2025-01-01 08:42:18.712698
#> ℹ Time threshold for new session: 900 seconds
#> ℹ Total number of sessions: 2000
#> ℹ Number of unique users: 2000
#> ℹ Total number of actions: 27533
#> ℹ Maximum sequence length: 26 actions
#> ℹ Time range: 2025-01-01 08:01:16.009382 to 2025-01-01 13:03:20.238288
print(res, which = "sequence")
#> # A tibble: 2,000 × 26
#> Action_T1 Action_T2 Action_T3 Action_T4 Action_T5 Action_T6 Action_T7
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 cohesion consensus discuss synthesis adapt consensus plan
#> 2 emotion cohesion discuss synthesis NA NA NA
#> 3 plan consensus plan NA NA NA NA
#> 4 discuss discuss consensus plan cohesion consensus discuss
#> 5 cohesion consensus plan plan monitor plan consensus
#> 6 discuss adapt cohesion consensus discuss emotion cohesion
#> 7 discuss emotion cohesion consensus coregulate coregulate plan
#> 8 cohesion plan consensus plan consensus discuss discuss
#> 9 emotion cohesion emotion plan monitor discuss emotion
#> 10 emotion cohesion consensus plan plan plan plan
#> # ℹ 1,990 more rows
#> # ℹ 19 more variables: Action_T8 <chr>, Action_T9 <chr>, Action_T10 <chr>,
#> # Action_T11 <chr>, Action_T12 <chr>, Action_T13 <chr>, Action_T14 <chr>,
#> # Action_T15 <chr>, Action_T16 <chr>, Action_T17 <chr>, Action_T18 <chr>,
#> # Action_T19 <chr>, Action_T20 <chr>, Action_T21 <chr>, Action_T22 <chr>,
#> # Action_T23 <chr>, Action_T24 <chr>, Action_T25 <chr>, Action_T26 <chr>
print(res, which = "meta")
#> # A tibble: 2,000 × 26
#> Action_T1 Action_T2 Action_T3 Action_T4 Action_T5 Action_T6 Action_T7
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 cohesion consensus discuss synthesis adapt consensus plan
#> 2 emotion cohesion discuss synthesis NA NA NA
#> 3 plan consensus plan NA NA NA NA
#> 4 discuss discuss consensus plan cohesion consensus discuss
#> 5 cohesion consensus plan plan monitor plan consensus
#> 6 discuss adapt cohesion consensus discuss emotion cohesion
#> 7 discuss emotion cohesion consensus coregulate coregulate plan
#> 8 cohesion plan consensus plan consensus discuss discuss
#> 9 emotion cohesion emotion plan monitor discuss emotion
#> 10 emotion cohesion consensus plan plan plan plan
#> # ℹ 1,990 more rows
#> # ℹ 19 more variables: Action_T8 <chr>, Action_T9 <chr>, Action_T10 <chr>,
#> # Action_T11 <chr>, Action_T12 <chr>, Action_T13 <chr>, Action_T14 <chr>,
#> # Action_T15 <chr>, Action_T16 <chr>, Action_T17 <chr>, Action_T18 <chr>,
#> # Action_T19 <chr>, Action_T20 <chr>, Action_T21 <chr>, Action_T22 <chr>,
#> # Action_T23 <chr>, Action_T24 <chr>, Action_T25 <chr>, Action_T26 <chr>
print(res, which = "long")
#> # A tibble: 2,000 × 26
#> Action_T1 Action_T2 Action_T3 Action_T4 Action_T5 Action_T6 Action_T7
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 cohesion consensus discuss synthesis adapt consensus plan
#> 2 emotion cohesion discuss synthesis NA NA NA
#> 3 plan consensus plan NA NA NA NA
#> 4 discuss discuss consensus plan cohesion consensus discuss
#> 5 cohesion consensus plan plan monitor plan consensus
#> 6 discuss adapt cohesion consensus discuss emotion cohesion
#> 7 discuss emotion cohesion consensus coregulate coregulate plan
#> 8 cohesion plan consensus plan consensus discuss discuss
#> 9 emotion cohesion emotion plan monitor discuss emotion
#> 10 emotion cohesion consensus plan plan plan plan
#> # ℹ 1,990 more rows
#> # ℹ 19 more variables: Action_T8 <chr>, Action_T9 <chr>, Action_T10 <chr>,
#> # Action_T11 <chr>, Action_T12 <chr>, Action_T13 <chr>, Action_T14 <chr>,
#> # Action_T15 <chr>, Action_T16 <chr>, Action_T17 <chr>, Action_T18 <chr>,
#> # Action_T19 <chr>, Action_T20 <chr>, Action_T21 <chr>, Action_T22 <chr>,
#> # Action_T23 <chr>, Action_T24 <chr>, Action_T25 <chr>, Action_T26 <chr>