Processes a dataset to create user sessions based on time gaps, ordering columns, or actor groupings. It supports different ways to understand order in user behavior and provides flexibility when widening the data.
Usage
prepare_data(
data,
actor,
time,
action,
order,
time_threshold = 900,
custom_format = NULL,
is_unix_time = FALSE,
unix_time_unit = "seconds",
unused_fn = dplyr::first
)Arguments
- data
A
data.frameor containing the action/event data.- actor
A
charactervector or anexpressionthat represents a tidy selection of the names of the columns that represent a user/actor identifiers. If not provided and neithertimenororderis specified, the entire dataset is treated as a single session. In the case of multiple actors, a new.actorcolumn is added that represents the interaction of the given columns.- time
A
characterstring or anexpressiongiving the name of the column representing timestamps of the action events.- action
A
characterstring or anexpressiongiving the name of the column holding the information about the action taken.- order
A
characterstring or anexpressiongiving the name of a column with sequence numbers or non-unique orderable values that indicate order within anactorgroup, if not present it will be ordered with all the data if noactoris available, used when widening the data. If bothactorandtimeare specified, then the sequence order should be specified such that it determines the order of events withinactorand each session.- time_threshold
An
integerspecifying the time threshold in seconds for creating new time-based sessions. Defaults to 900 seconds.- custom_format
A
characterstring giving the format used to parse thetimecolumn.- is_unix_time
A
logicalvalue indicating whether thetimecolumn is in Unix time. The default isFALSE.- unix_time_unit
A
characterstring giving the Unix time unit whenis_unix_timeisTRUE. The default is"seconds". Valid options are"seconds","milliseconds", or"microseconds".- unused_fn
How to handle extra columns when pivoting to wide format. See
tidyr::pivot_wider(). The default is to keep all columns and to use the first value.
Value
A tna_data object, which is a list with the following elements:
long_data: The processed data in long format.sequence_data: The processed data on the sequences in wide format, with actions/events as different variables structured with sequences.meta_data: Other variables from the original data in wide format.statistics: Alistcontaining summary statistics: total sessions, total actions, unique users, time range (if applicable), and top sessions and user by activities.
See also
Other data:
import_data(),
import_onehot(),
print.tna_data(),
simulate.tna()
Examples
results <- prepare_data(
group_regulation_long, actor = "Actor", time = "Time", action = "Action"
)
#> ── Preparing Data ──────────────────────────────────────────────────────────────
#> ℹ Input data dimensions: 27533 rows, 6 columns
#> ℹ First few time values: 2025-01-01 08:27:07.712698, 2025-01-01
#> 08:35:20.712698, and 2025-01-01 08:42:18.712698
#> ℹ Number of values to parse: 27533
#> ℹ Sample values: 2025-01-01 08:27:07.712698, 2025-01-01 08:35:20.712698, and
#> 2025-01-01 08:42:18.712698
#> ℹ Sample of parsed times: 2025-01-01 08:27:07.712698, 2025-01-01
#> 08:35:20.712698, and 2025-01-01 08:42:18.712698
#> ℹ Time threshold for new session: 900 seconds
#> ℹ Total number of sessions: 2000
#> ℹ Number of unique users: 2000
#> ℹ Total number of actions: 27533
#> ℹ Maximum sequence length: 26 actions
#> ℹ Time range: 2025-01-01 08:01:16.009382 to 2025-01-01 13:03:20.238288
print(results$sequence_data)
#> # A tibble: 2,000 × 26
#> Action_T1 Action_T2 Action_T3 Action_T4 Action_T5 Action_T6 Action_T7
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 cohesion consensus discuss synthesis adapt consensus plan
#> 2 emotion cohesion discuss synthesis NA NA NA
#> 3 plan consensus plan NA NA NA NA
#> 4 discuss discuss consensus plan cohesion consensus discuss
#> 5 cohesion consensus plan plan monitor plan consensus
#> 6 discuss adapt cohesion consensus discuss emotion cohesion
#> 7 discuss emotion cohesion consensus coregulate coregulate plan
#> 8 cohesion plan consensus plan consensus discuss discuss
#> 9 emotion cohesion emotion plan monitor discuss emotion
#> 10 emotion cohesion consensus plan plan plan plan
#> # ℹ 1,990 more rows
#> # ℹ 19 more variables: Action_T8 <chr>, Action_T9 <chr>, Action_T10 <chr>,
#> # Action_T11 <chr>, Action_T12 <chr>, Action_T13 <chr>, Action_T14 <chr>,
#> # Action_T15 <chr>, Action_T16 <chr>, Action_T17 <chr>, Action_T18 <chr>,
#> # Action_T19 <chr>, Action_T20 <chr>, Action_T21 <chr>, Action_T22 <chr>,
#> # Action_T23 <chr>, Action_T24 <chr>, Action_T25 <chr>, Action_T26 <chr>
print(results$meta_data)
#> # A tibble: 2,000 × 7
#> .session_id Actor Achiever Group Course Time .session_nr
#> <chr> <int> <chr> <dbl> <chr> <dttm> <int>
#> 1 1 session1 1 High 1 A 2025-01-01 08:27:07 1
#> 2 10 session1 10 High 1 A 2025-01-01 08:23:45 1
#> 3 100 session1 100 High 10 A 2025-01-01 10:11:50 1
#> 4 1000 session1 1000 High 100 B 2025-01-01 09:12:00 1
#> 5 1001 session1 1001 Low 101 B 2025-01-01 09:18:40 1
#> 6 1002 session1 1002 Low 101 B 2025-01-01 09:18:53 1
#> 7 1003 session1 1003 Low 101 B 2025-01-01 09:18:05 1
#> 8 1004 session1 1004 Low 101 B 2025-01-01 09:22:26 1
#> 9 1005 session1 1005 Low 101 B 2025-01-01 09:22:31 1
#> 10 1006 session1 1006 Low 101 B 2025-01-01 09:15:23 1
#> # ℹ 1,990 more rows
print(results$statistics)
#> $total_sessions
#> [1] 2000
#>
#> $total_actions
#> [1] 27533
#>
#> $max_sequence_length
#> [1] 26
#>
#> $unique_users
#> [1] 2000
#>
#> $sessions_per_user
#> # A tibble: 2,000 × 2
#> Actor n_sessions
#> <int> <int>
#> 1 1 1
#> 2 2 1
#> 3 3 1
#> 4 4 1
#> 5 5 1
#> 6 6 1
#> 7 7 1
#> 8 8 1
#> 9 9 1
#> 10 10 1
#> # ℹ 1,990 more rows
#>
#> $actions_per_session
#> # A tibble: 2,000 × 2
#> .session_id n_actions
#> <chr> <int>
#> 1 1010 session1 26
#> 2 1015 session1 26
#> 3 1030 session1 26
#> 4 1092 session1 26
#> 5 1106 session1 26
#> 6 1107 session1 26
#> 7 1153 session1 26
#> 8 1184 session1 26
#> 9 1209 session1 26
#> 10 1267 session1 26
#> # ℹ 1,990 more rows
#>
#> $time_range
#> [1] "2025-01-01 08:01:16 UTC" "2025-01-01 13:03:20 UTC"
#>
# Custom order column
data_ordered <- tibble::tibble(
user = c("A", "A", "A", "B", "B", "C", "C", "C"),
order = c(1, 2, 3, 1, 2, 1, 2, 3),
action = c(
"view", "click", "add_cart", "view",
"checkout", "view", "click", "share"
)
)
results_ordered <- prepare_data(
data_ordered, actor = "user", order = "order", action = "action"
)
#> ── Preparing Data ──────────────────────────────────────────────────────────────
#> ℹ Input data dimensions: 8 rows, 3 columns
#> ℹ Using provided `order` column to create sequences.
#> ℹ Total number of sessions: 3
#> ℹ Number of unique users: 3
#> ℹ Total number of actions: 8
#> ℹ Maximum sequence length: 3 actions
print(results_ordered$sequence_data)
#> # A tibble: 3 × 3
#> T1 T2 T3
#> <chr> <chr> <chr>
#> 1 view click add_cart
#> 2 view checkout NA
#> 3 view click share
print(results_ordered$meta_data)
#> # A tibble: 3 × 3
#> .session_id user order
#> <chr> <chr> <dbl>
#> 1 A A 1
#> 2 B B 1
#> 3 C C 1
print(results_ordered$statistics)
#> $total_sessions
#> [1] 3
#>
#> $total_actions
#> [1] 8
#>
#> $max_sequence_length
#> [1] 3
#>
#> $unique_users
#> [1] 3
#>
#> $sessions_per_user
#> # A tibble: 3 × 2
#> user n_sessions
#> <chr> <int>
#> 1 A 1
#> 2 B 1
#> 3 C 1
#>
#> $actions_per_session
#> # A tibble: 3 × 2
#> .session_id n_actions
#> <chr> <int>
#> 1 A 3
#> 2 C 3
#> 3 B 2
#>
# No actor scenario leading to a single session
data_single_session <- tibble::tibble(
action = c(
"view", "click", "add_cart", "view",
"checkout", "view", "click", "share"
)
)
results_single <- prepare_data(data_single_session, action = "action")
#> ── Preparing Data ──────────────────────────────────────────────────────────────
#> ℹ Input data dimensions: 8 rows, 1 columns
#> ℹ No `time` or `order` column provided. Treating the entire dataset as one
#> session.
#> ℹ Total number of sessions: 1
#> ℹ Total number of actions: 8
#> ℹ Maximum sequence length: 8 actions
print(results_single$sequence_data)
#> # A tibble: 1 × 8
#> T1 T2 T3 T4 T5 T6 T7 T8
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 view click add_cart view checkout view click share
print(results_single$meta_data)
#> # A tibble: 1 × 1
#> .session_id
#> <chr>
#> 1 session
print(results_single$statistics)
#> $total_sessions
#> [1] 1
#>
#> $total_actions
#> [1] 8
#>
#> $max_sequence_length
#> [1] 8
#>
#> $actions_per_session
#> # A tibble: 1 × 2
#> .session_id n_actions
#> <chr> <int>
#> 1 session 8
#>
# Multiple actors
data_multi_actor <- tibble::tibble(
user = c("A", "A", "A", "A", "B", "B", "B", "B"),
session = c(1, 1, 2, 2, 1, 1, 2, 2),
action = c(
"view", "click", "add_cart", "view",
"checkout", "view", "click", "share"
)
)
results_multi_actor <- prepare_data(
data_multi_actor, actor = c("user", "session"), action = "action"
)
#> ── Preparing Data ──────────────────────────────────────────────────────────────
#> ℹ Input data dimensions: 8 rows, 3 columns
#> ℹ No `time` or `order` column provided. Using `actor` as a session identifier.
#> ℹ Total number of sessions: 4
#> ℹ Number of unique users: 4
#> ℹ Total number of actions: 8
#> ℹ Maximum sequence length: 2 actions
print(results_multi_actor$sequence_data)
#> # A tibble: 4 × 2
#> T1 T2
#> <chr> <chr>
#> 1 view click
#> 2 checkout view
#> 3 add_cart view
#> 4 click share
print(results_multi_actor$meta_data)
#> # A tibble: 4 × 4
#> .session_id user session .actor
#> <fct> <chr> <dbl> <fct>
#> 1 A-1 A 1 A-1
#> 2 B-1 B 1 B-1
#> 3 A-2 A 2 A-2
#> 4 B-2 B 2 B-2
print(results_multi_actor$statistics)
#> $total_sessions
#> [1] 4
#>
#> $total_actions
#> [1] 8
#>
#> $max_sequence_length
#> [1] 2
#>
#> $unique_users
#> [1] 4
#>
#> $sessions_per_user
#> # A tibble: 4 × 2
#> .actor n_sessions
#> <fct> <int>
#> 1 A-1 1
#> 2 B-1 1
#> 3 A-2 1
#> 4 B-2 1
#>
#> $actions_per_session
#> # A tibble: 4 × 2
#> .session_id n_actions
#> <fct> <int>
#> 1 A-1 2
#> 2 B-1 2
#> 3 A-2 2
#> 4 B-2 2
#>
