Simulate Data from a Transition Network Analysis Model
Arguments
- object
A
tna
object. The edge weights must be transition probabilities, i.e., the model must havetype = "relative"
.- nsim
An
integer
giving the number of sequences to simulate. The default is 1.- seed
Ignored. Please use
set.seed()
manually.- max_len
An
integer
giving the maximum length of the simulated sequences. When no missing values are generated, this is the length of all simulated sequences.- na_range
An
integer
vector of length 2 giving the minimum and maximum number of missing values to generate for each sequence. The number of missing values is drawn uniformly from this range. If both values are zero (the default), no missing values are generated.- ...
Ignored.
See also
Basic functions
build_model()
,
hist.group_tna()
,
hist.tna()
,
import_data()
,
plot.group_tna()
,
plot.tna()
,
plot_frequencies()
,
plot_frequencies.group_tna()
,
plot_mosaic()
,
plot_mosaic.group_tna()
,
plot_mosaic.tna_data()
,
prepare_data()
,
print.group_tna()
,
print.summary.group_tna()
,
print.summary.tna()
,
print.tna()
,
print.tna_data()
,
summary.group_tna()
,
summary.tna()
,
tna-package