Simulate Data from a Transition Network Analysis Model
Arguments
- object
A
tnaobject. The edge weights must be transition probabilities or frequencies, i.e., the model must havetype = "relative"ortype = "frequency".- nsim
An
integergiving the number of sequences to simulate. The default is 1.- seed
an object specifying if and how the random number generator should be initialized (‘seeded’).
For the"lm"method, eitherNULLor an integer that will be used in a call toset.seedbefore simulating the response vectors. If set, the value is saved as the"seed"attribute of the returned value. The default,NULLwill not change the random generator state, and return.Random.seedas the"seed"attribute, see ‘Value’.- max_len
An
integergiving the maximum length of the simulated sequences. When no missing values are generated, this is the length of all simulated sequences.- na_range
An
integervector of length 2 giving the minimum and maximum number of missing values to generate for each sequence. The number of missing values is drawn uniformly from this range. If both values are zero (the default), no missing values are generated.- zero_row
A
characterstring describing how to process zero rows in the weight matrix. The option"self"(the default) assigns probability 1 to the corresponding state (self loop) and option"uniform"assigns a uniform distribution.- format
A
characterstring indicating whether the data should be returned inwideorlongformat.- ...
Ignored.
See also
Other data:
import_data(),
import_onehot(),
prepare_data(),
print.tna_data(),
simulate.group_tna()
