Test edge weight differences between all pairs or a subset of pairs of
a group_tna
object. See permutation_test.tna()
for more details.
Usage
# S3 method for class 'group_tna'
permutation_test(
x,
groups,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
Arguments
- x
A
group_tna
object- groups
An
integer
vector or acharacter
vector of group indices or names, respectively, defining which groups to compare. When not provided, all pairs are compared (the default).- adjust
A
character
string for the method to adjust p-values with for multiple comparisons. The default is"none"
for no adjustment. Seestats::p.adjust()
for details and available adjustment methods.- iter
An
integer
giving the number of permutations to perform. The default is 1000.- paired
A
logical
value. IfTRUE
, perform paired permutation tests; ifFALSE
, perform unpaired tests. The default isFALSE
.- level
A
numeric
value giving the significance level for the permutation tests. The default is 0.05.- measures
A
character
vector of centrality measures to test. Seecentralities()
for a list of available centrality measures.- ...
Additional arguments passed to
centralities()
.
See also
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model <- group_model(engagement_mmm)
# Small number of iterations for CRAN
permutation_test(model, iter = 20)
#> Cluster 1 vs. Cluster 2
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.214 4.39 0.0476
#> 2 Average -> Active 0.188 4.05 0.0476
#> 3 Disengaged -> Active 0 0 1
#> 4 Active -> Average -0.148 -3.35 0.0476
#> 5 Average -> Average -0.126 -3.23 0.0476
#> 6 Disengaged -> Average -0.192 -2.74 0.0476
#> 7 Active -> Disengaged -0.0657 -7.44 0.0476
#> 8 Average -> Disengaged -0.0622 -3.24 0.0476
#> 9 Disengaged -> Disengaged 0.192 3.00 0.0476
#>
#> Cluster 1 vs. Cluster 3
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.405 5.04 0.0476
#> 2 Average -> Active 0.354 11.0 0.0476
#> 3 Disengaged -> Active 0.268 12.5 0.0476
#> 4 Active -> Average -0.314 -4.59 0.0476
#> 5 Average -> Average -0.113 -3.76 0.0476
#> 6 Disengaged -> Average -0.0898 -2.47 0.0952
#> 7 Active -> Disengaged -0.0912 -3.91 0.0476
#> 8 Average -> Disengaged -0.241 -7.32 0.0476
#> 9 Disengaged -> Disengaged -0.178 -3.99 0.0476
#>
#> Cluster 2 vs. Cluster 3
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.192 5.29 0.0476
#> 2 Average -> Active 0.166 5.92 0.0476
#> 3 Disengaged -> Active 0.268 11.4 0.0476
#> 4 Active -> Average -0.166 -4.35 0.0476
#> 5 Average -> Average 0.0129 0.367 0.619
#> 6 Disengaged -> Average 0.103 2.84 0.0476
#> 7 Active -> Disengaged -0.0256 -1.42 0.238
#> 8 Average -> Disengaged -0.178 -7.31 0.0476
#> 9 Disengaged -> Disengaged -0.370 -9.98 0.0476