Test edge weight differences between all pairs or a subset of pairs of
a group_tna
object. See permutation_test.tna()
for more details.
Usage
# S3 method for class 'group_tna'
permutation_test(
x,
groups,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
Arguments
- x
A
group_tna
object- groups
An
integer
vector or acharacter
vector of group indices or names, respectively, defining which groups to compare. When not provided, all pairs are compared (the default).- adjust
A
character
string for the method to adjust p-values with for multiple comparisons. The default is"none"
for no adjustment. Seestats::p.adjust()
for details and available adjustment methods.- iter
An
integer
giving the number of permutations to perform. The default is 1000.- paired
A
logical
value. IfTRUE
, perform paired permutation tests; ifFALSE
, perform unpaired tests. The default isFALSE
.- level
A
numeric
value giving the significance level for the permutation tests. The default is 0.05.- measures
A
character
vector of centrality measures to test. Seecentralities()
for a list of available centrality measures.- ...
Additional arguments passed to
centralities()
.
See also
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model <- group_model(engagement_mmm)
# Small number of iterations for CRAN
permutation_test(model, iter = 20)
#> Cluster 1 vs. Cluster 2
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.214 4.23 0.0476
#> 2 Average -> Active 0.188 4.18 0.0476
#> 3 Disengaged -> Active 0 0 1
#> 4 Active -> Average -0.148 -3.46 0.0476
#> 5 Average -> Average -0.126 -2.68 0.0476
#> 6 Disengaged -> Average -0.192 -2.70 0.0476
#> 7 Active -> Disengaged -0.0657 -5.36 0.0476
#> 8 Average -> Disengaged -0.0622 -3.16 0.0476
#> 9 Disengaged -> Disengaged 0.192 3.40 0.0476
#>
#> Cluster 1 vs. Cluster 3
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.405 6.31 0.0476
#> 2 Average -> Active 0.354 8.08 0.0476
#> 3 Disengaged -> Active 0.268 10.1 0.0476
#> 4 Active -> Average -0.314 -5.57 0.0476
#> 5 Average -> Average -0.113 -4.29 0.0476
#> 6 Disengaged -> Average -0.0898 -2.48 0.0952
#> 7 Active -> Disengaged -0.0912 -5.23 0.0476
#> 8 Average -> Disengaged -0.241 -5.63 0.0476
#> 9 Disengaged -> Disengaged -0.178 -3.50 0.0476
#>
#> Cluster 2 vs. Cluster 3
#>
#> # A tibble: 9 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 Active -> Active 0.192 5.00 0.0476
#> 2 Average -> Active 0.166 5.63 0.0476
#> 3 Disengaged -> Active 0.268 10.2 0.0476
#> 4 Active -> Average -0.166 -3.77 0.0476
#> 5 Average -> Average 0.0129 0.365 0.762
#> 6 Disengaged -> Average 0.103 3.02 0.0476
#> 7 Active -> Disengaged -0.0256 -1.16 0.286
#> 8 Average -> Disengaged -0.178 -7.56 0.0476
#> 9 Disengaged -> Disengaged -0.370 -9.31 0.0476