
Compare Two Networks from Sequence Data Using Permutation Tests
Source:R/permutation.R
permutation_test.Rd
This function compares two networks built from sequence data using permutation tests. The function builds Markov models for two sequence objects, computes the transition probabilities, and compares them by performing permutation tests. It returns the differences in transition probabilities, effect sizes, p-values, and confidence intervals.
Usage
permutation_test(
x,
y,
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
Arguments
- x
A
tna
object containing sequence data for the firsttna
model.- y
A
tna
object containing sequence data for the secondtna
model.- iter
An
integer
giving the number of permutations to perform. The default is 1000.- paired
A
logical
value. IfTRUE
, perform paired permutation tests; ifFALSE
, perform unpaired tests. The default isFALSE
.- level
A
numeric
value giving the significance level for the permutation tests. The default is 0.05.- measures
A
character
vector of centrality measures to test. Seecentralities()
for a list of available centrality measures.- ...
Additional arguments passed to
centralities()
.
Value
A tna_permutation
object which is a list
with two elements:
edges
and centralities
, both containing the following elements
stats
: Adata.frame
of original differences, effect sizes, and p-values for each edge or centrality measure. The effect size is computed as the observed difference divided by the standard deviation of the differences of the permuted samples.diffs_true
: Amatrix
of differences in the data.diffs_sig
: Amatrix
showing the significant differences.
See also
Other validation:
bootstrap()
,
deprune()
,
estimate_cs()
,
plot.group_tna_stability()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model_x <- tna(group_regulation[1:200, ])
model_y <- tna(group_regulation[1001:1200, ])
# Small number of iterations for CRAN
permutation_test(model_x, model_y, iter = 20)
#> Edges
#>
#> # A tibble: 81 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 adapt -> adapt 0 NaN 1
#> 2 cohesion -> adapt 0.00541 0.923 0.95
#> 3 consensus -> adapt -0.000679 -0.155 0.7
#> 4 coregulate -> adapt 0.00769 0.464 0.75
#> 5 discuss -> adapt -0.130 -9.35 0
#> 6 emotion -> adapt 0.0101 1.65 0.3
#> 7 monitor -> adapt -0.00480 -0.346 1
#> 8 plan -> adapt 0.00339 1.50 0.05
#> 9 synthesis -> adapt -0.159 -2.38 0
#> 10 adapt -> cohesion -0.0907 -1.17 0.25
#> # ℹ 71 more rows