
Compare Two Networks from Sequence Data using a Permutation Test
Source:R/permutation.R
permutation_test.Rd
This function compares two networks built from sequence data using permutation tests. The function builds Markov models for two sequence objects, computes the transition probabilities, and compares them by performing permutation tests. It returns the differences in transition probabilities, effect sizes, estimated p-values, and confidence intervals.
Usage
permutation_test(x, ...)
# S3 method for class 'tna'
permutation_test(
x,
y,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
Arguments
- x
A
tna
object containing sequence data for the firsttna
model.- ...
Additional arguments passed to
centralities()
.- y
A
tna
object containing sequence data for the secondtna
model.- adjust
A
character
string for the method to adjust p-values with for multiple comparisons. The default is"none"
for no adjustment. Seestats::p.adjust()
for details and available adjustment methods.- iter
An
integer
giving the number of permutations to perform. The default is 1000.- paired
A
logical
value. IfTRUE
, perform paired permutation tests; ifFALSE
, perform unpaired tests. The default isFALSE
.- level
A
numeric
value giving the significance level for the permutation tests. The default is 0.05.- measures
A
character
vector of centrality measures to test. Seecentralities()
for a list of available centrality measures.
Value
A tna_permutation
object which is a list
with two elements:
edges
and centralities
, both containing the following elements:
stats
: Adata.frame
of original differences, effect sizes, and estimated p-values for each edge or centrality measure. The effect size is computed as the observed difference divided by the standard deviation of the differences of the permuted samples.diffs_true
: Amatrix
of differences in the data.diffs_sig
: Amatrix
showing the significant differences.
See also
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test.group_tna()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model_x <- tna(group_regulation[1:200, ])
model_y <- tna(group_regulation[1001:1200, ])
# Small number of iterations for CRAN
permutation_test(model_x, model_y, iter = 20)
#> # A tibble: 81 × 4
#> edge_name diff_true effect_size p_value
#> <chr> <dbl> <dbl> <dbl>
#> 1 adapt -> adapt 0 NaN 1
#> 2 cohesion -> adapt 0.00541 0.936 0.810
#> 3 consensus -> adapt -0.000679 -0.233 0.619
#> 4 coregulate -> adapt 0.00769 0.707 0.667
#> 5 discuss -> adapt -0.130 -7.26 0.0476
#> 6 emotion -> adapt 0.0101 1.60 0.286
#> 7 monitor -> adapt -0.00480 -0.369 1
#> 8 plan -> adapt 0.00339 1.56 0.143
#> 9 synthesis -> adapt -0.159 -2.62 0.0952
#> 10 adapt -> cohesion -0.0907 -1.13 0.381
#> # ℹ 71 more rows