Print Detailed Information on the Pruning Results
Usage
pruning_details(x, ...)
# S3 method for class 'tna'
pruning_details(x, ...)
# S3 method for class 'group_tna'
pruning_details(x, ...)
Value
A data.frame
containing the removed edges if x
is a tna
object,
or a list
of data.frame
objects in the case of group_tna
object.
See also
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_stability()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruning_details(pruned_threshold)
#> **Pruning Details**
#>
#> Method used: User-specified threshold (0.1)
#> Number of removed edges: 49
#> Number of retained edges: 29
#>
#> **Removed edges**
#>
#> from to weight
#> 1 cohesion adapt 0.0029498525
#> 2 consensus adapt 0.0047400853
#> 3 coregulate adapt 0.0162436548
#> 4 discuss adapt 0.0713743356
#> 5 emotion adapt 0.0024673951
#> 6 monitor adapt 0.0111653873
#> 7 plan adapt 0.0009745006
#> 8 cohesion cohesion 0.0271386431
#> 9 consensus cohesion 0.0148522673
#> 10 coregulate cohesion 0.0360406091
#> 11 discuss cohesion 0.0475828904
#> 12 monitor cohesion 0.0558269365
#> 13 plan cohesion 0.0251745980
#> 14 synthesis cohesion 0.0337423313
#> 15 consensus consensus 0.0820034761
#> 16 adapt coregulate 0.0216110020
#> 17 coregulate coregulate 0.0233502538
#> 18 discuss coregulate 0.0842824601
#> 19 emotion coregulate 0.0341910469
#> 20 monitor coregulate 0.0579204466
#> 21 plan coregulate 0.0172161767
#> 22 synthesis coregulate 0.0444785276
#> 23 adapt discuss 0.0589390963
#> 24 cohesion discuss 0.0595870206
#> 25 plan discuss 0.0678902063
#> 26 synthesis discuss 0.0628834356
#> 27 consensus emotion 0.0726813083
#> 28 emotion emotion 0.0768417342
#> 29 monitor emotion 0.0907187718
#> 30 synthesis emotion 0.0705521472
#> 31 adapt monitor 0.0333988212
#> 32 cohesion monitor 0.0330383481
#> 33 consensus monitor 0.0466108390
#> 34 coregulate monitor 0.0862944162
#> 35 discuss monitor 0.0222728423
#> 36 emotion monitor 0.0363059570
#> 37 monitor monitor 0.0181437544
#> 38 plan monitor 0.0755237941
#> 39 synthesis monitor 0.0122699387
#> 40 adapt plan 0.0157170923
#> 41 discuss plan 0.0116426221
#> 42 emotion plan 0.0997532605
#> 43 synthesis plan 0.0751533742
#> 44 cohesion synthesis 0.0035398230
#> 45 consensus synthesis 0.0075841365
#> 46 coregulate synthesis 0.0187817259
#> 47 emotion synthesis 0.0028198802
#> 48 monitor synthesis 0.0160502442
#> 49 plan synthesis 0.0017865844