Prunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Prunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Usage
prune(x, ...)
# S3 method for class 'tna'
prune(
x,
method = "threshold",
threshold = 0.1,
lowest = 0.05,
level = 0.5,
boot = NULL,
...
)
# S3 method for class 'group_tna'
prune(x, ...)
Arguments
- x
An object of class
tna
orgroup_tna
- ...
Arguments passed to
bootstrap()
when usingmethod = "bootstrap"
and when atna_bootstrap
is not supplied.- method
A
character
string describing the pruning method. The available options are"threshold"
,"lowest"
,"bootstrap"
and"disparity"
, corresponding to the methods listed in Details. The default is"threshold"
.- threshold
A numeric value specifying the edge weight threshold. Edges with weights below or equal to this threshold will be considered for removal.
- lowest
A
numeric
value specifying the lowest percentage of non-zero edges. This percentage of edges with the lowest weights will be considered for removal. The default is0.05
.- level
A
numeric
value representing the significance level for the disparity filter. Defaults to0.5
.- boot
A
tna_bootstrap
object to be used for pruning with method"boot"
. The method argument is ignored if this argument is supplied.
Value
A pruned tna
or group_tna
object. Details on the pruning can be
viewed with pruning_details()
. The original model can be restored with
deprune()
.
See also
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_stability()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_stability()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Examples
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest", lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity", level = 0.5)