Prunes a network represented by a tna object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Prunes a network represented by a tna object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Usage
prune(x, ...)
# S3 method for class 'tna'
prune(
x,
method = "threshold",
threshold = 0.1,
lowest = 0.05,
level = 0.5,
boot = NULL,
...
)
# S3 method for class 'group_tna'
prune(x, ...)Arguments
- x
An object of class
tnaorgroup_tna- ...
Arguments passed to
bootstrap()when usingmethod = "bootstrap"and when atna_bootstrapis not supplied.- method
A
characterstring describing the pruning method. The available options are"threshold","lowest","bootstrap"and"disparity", corresponding to the methods listed in Details. The default is"threshold".- threshold
A numeric value specifying the edge weight threshold. Edges with weights below or equal to this threshold will be considered for removal.
- lowest
A
numericvalue specifying the lowest percentage of non-zero edges. This percentage of edges with the lowest weights will be considered for removal. The default is0.05.- level
A
numericvalue representing the significance level for the disparity filter. Defaults to0.5.- boot
A
tna_bootstrapobject to be used for pruning with method"boot". The method argument is ignored if this argument is supplied.
Value
A pruned tna or group_tna object. Details on the pruning can be
viewed with pruning_details(). The original model can be restored with
deprune().
See also
Validation functions
bootstrap(),
deprune(),
estimate_cs(),
permutation_test(),
permutation_test.group_tna(),
plot.group_tna_bootstrap(),
plot.group_tna_permutation(),
plot.group_tna_stability(),
plot.tna_bootstrap(),
plot.tna_permutation(),
plot.tna_stability(),
print.group_tna_bootstrap(),
print.group_tna_permutation(),
print.group_tna_stability(),
print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),
print.tna_bootstrap(),
print.tna_permutation(),
print.tna_stability(),
pruning_details(),
reprune(),
summary.group_tna_bootstrap(),
summary.tna_bootstrap()
Validation functions
bootstrap(),
deprune(),
estimate_cs(),
permutation_test(),
permutation_test.group_tna(),
plot.group_tna_bootstrap(),
plot.group_tna_permutation(),
plot.group_tna_stability(),
plot.tna_bootstrap(),
plot.tna_permutation(),
plot.tna_stability(),
print.group_tna_bootstrap(),
print.group_tna_permutation(),
print.group_tna_stability(),
print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),
print.tna_bootstrap(),
print.tna_permutation(),
print.tna_stability(),
pruning_details(),
reprune(),
summary.group_tna_bootstrap(),
summary.tna_bootstrap()
Examples
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest", lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity", level = 0.5)
